
, 

N A S A  TECHNICAL NOTE 

A THEORETICAL ANALYSIS OF THE 
FLUTTER OF ORTHOTROPIC PANELS 
EXPOSED T O  A HIGH SUPERSONIC 
STREAM OF ARBITRARY DIRECTION 

by Peter A. Guspers, Jr., und Buss Redd  

Ames Research Center 
M offett FieU, Cu Z$ 

N A T I O N A L  AERONAUTICS AND SPACE A D M I N I S T R A T I O N  WASHINGTON,  0. C .  AUGUST 1966  



TECH LIBRARY KAFB. NM 

NASA TN D-3551 

A THEORETICAL ANALYSIS OF THE FLUTTER OF ORTHOTROPIC 

PANELS EXPOSED TO A HIGH SUPERSONIC STREAM 

OF ARBITRARY DIRECTION 

By Peter A.  Gaspers, Jr . ,  and Bass Redd 

Ames  Research Center 
Moffett Field, Calif. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $2.00 



A WORETIClVl A.NA.LYSIS O F  THE: FLUTTER O F  ORTHOTROPIC 

PANELS EXPOSED TO A HIGH SUPERSONIC STREAM 

OF ARBITRARY DIRECTION 

By Peter  A.  Gaspers, Jr., and Bass Redd 
Ames Research Center 

SUMMARY 

A t h e o r e t i c a l  analysis  of t h e  f l u t t e r  of f l a t ,  rectangular,  orthotropic 
panels a t  various angles of or ien ta t ion  with respect  t o  the  flow d i rec t ion  i s  
presented. The analysis  i s  based on l i n e a r  s m a l l  def lec t ion  p l a t e  theory and 
s t a t i c  s t r i p  theory f o r  aerodynamic forces .  The p a r t i a l  d i f f e r e n t i a l  equation 
of motion i s  then solved approximately, f o r  panels with clamped or simply 
supported edges, using the  Galerkin method. 

P lo ts  of the  c r i t i c a l  dynamic pressure parameter as a function of the  
number of Galerkin modes a r e  presented t o  demonstrate convergence propert ies  
of Galerkin's  method. It i s  shown t h a t  a large number of modes may be nec- 
essary t o  give converged solut ions.  Curves of the  c r i t i c a l  dynamic pressure 
parameter. as a function of flow angle a r e  presented f o r  various combinations 
of s t i f f n e s s  r a t i o s  and length-to-width r a t i o s .  

INTRODUCTION 

Exterior surface panels of supersonic a i r c r a f t  and aerospace vehicles 
of ten  must be capable of carrying not only a i r  loads but  a l s o  acoustic,  vibra-  
t i o n ,  and thermal loads. Skin s t ruc tures  which have demonstrated promising 
r e s u l t s  a r e  of ten or thotropic .  

Past  t h e o r e t i c a l  work on panel f l u t t e r  has been devoted almost completely 
t o  rectangular i so t ropic  panels having simply supported edge conditions with 
the  a i r  flow p a r a l l e l  t o  one edge. In some invest igat ions ( r e f s .  1, 2, and 3) 
orthotropic panels, clamped edge conditions, and a r b i t r a r y  flow angles have 
been t r e a t e d  individual ly  with no consideration being given t o  a combination 
of these parameters. In  one previous invest igat ion ( r e f .  4 )  simply supported 
orthotropic panels with a r b i t r a r y  flow d i rec t ion  and midplane s t r e s s e s  were 
analyzed. 

In t h i s  paper an analysis  of a f l a t  rectangular orthotropic panel clamped 
or simply supported on a l l  four edges and exposed t o  a high supersonic flow of 
a r b i t r a r y  d i rec t ion  i s  presented. The parameters used i n  the  analysis  are 
r i g i d i t y  r a t i o s ,  length-to-width r a t i o ,  flow angle, and the  dynamic pressure 
parameter. The r e s u l t s  are presented i n  a s e r i e s  of curves f o r  various 



combinations of t he  parameters, from which f l u t t e r  boundaries can e a s i l y  be 
calculated.  
forces ,  t he  r e s u l t s  a r e  r e s t r i c t e d  t o  Mach numbers above approximately 1.6. 

Since modified l i n e a r  p i s ton  theory i s  used f o r  aerodynamic 

SYMBOLS 
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DX 

DY 
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M 

M 
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Y 

A 

A 

AC 

pane l  length 

panel  width 

panel  bending r i g i d i t y  i n  x d i r ec t ion  

panel  bending r i g i d i t y  i n  y d i r ec t ion  

panel  t o r s i o n a l  r i g i d i t y  

Mach number 

number of Galerkin modes i n  x d i r ec t ion  

in tegers  

number of Galerkin modes i n  y d i r ec t ion  

midplane s t r e s ses ,  pos i t i ve  i n  compression 

midplane shear s t r e s s  

dynamic pressure 

time 

free-stream ve loc i ty  

panel  def lec t ion  

rectangular  coordinates 

eigenvalue 

J2-T 
m a s s  p e r  u n i t  a rea  of panel 

flow angle 

dynamic pressure parameter 

c r i t i c a l  dynamic pressure parameter 
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free-stream densi ty  

d i f f e r e n t i a l  operator defined i n  equation (2a) 

THEORFTICAL ANALYSIS 

If l i n e a r  s m a l l  def lec t ion  p l a t e  theory and modified l i n e a r  p i s t o n  theory 
f o r  aerodynamic loading are assumed, t h e  p a r t i a l  d i f f e r e n t i a l  equation of 
motion f o r  a f la t ,  rectangular,  or thotropic  p l a t e  with one s ide  exposed t o  a 
high supersonic flow of a r b i t r a r y  d i r ec t ion  is  : 

aZw 

ax2 ax ay 
+ 2Nxy - a 4 w  fi 

+ Dy ay4 + N x  
a 4 w  

Dx + 2H 
ax ax2ay2 

- 0  
'q a w  cos A + aw - s i n  A + - l a w )  - + Y a 2 W  s- + &  a Y  v a t  

where 
f igu re  1. 

w = w(x,y,t)  i s  t h e  def lec t ion  and the  coordinate system i s  shown i n  

Making the  transformation x = axl, y = byl and then dropping subscr ip ts  
on xl,yl f o r  convenience, we can wr i te  equation (1) i n t h e  form: 

ow + ha - - +  a w  --- y a 4  a2w - 0  
v a t  Dx a t2  

where Q i s  the  d i f f e r e n t i a l  operator 

a4 2Ha2 a4 + ? ? f ? C + R x -  a2 +YL 2aRx 
@ = -  + -  

ax4 Dxb2 dx2ay2 Dxb4 ay4 ax2 b ax ay 

3 E + h  c o s n - + - - i n n -  a a  ( ax b 
+ 

b2 ay2 

and 

N a2 Nya2 zqa3 -xy A = -  
RXY- Dx RY = Dx PDX 

Nxa2 
Rx = - 

DX 

H e r e  x and y are dimensionless with a range from 0 t o  1. 
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W e  assume a so lu t ion  of equation (2)  of t h e  form: 

W ( X , Y , t )  = u(x ,y )g ( t>  = ug 

Subs t i tu t ion  i n  equation (2)  gives 

o r  

Since the  l e f t  s ide  of t h i s  equation involves only x and y and the  r i g h t  
s ide  only t, both are equal t o  a constant which we c a l l  a and we have 

(4) (PU = aU 

Equation (4)  together  with the  boundary conditions on 
problem which can be solved approximately by t h e  Galerkin method i n  which a 
l i n e a r  combination of l i n e a r l y  independent functions,  each of which s a t i s f i e s  
t he  boundary conditions, is subs t i tu ted  f o r  U. 

U i s  an eigenvalue 

We consider panels with clamped edges and panels with simply supported 
edges. For a panel with clamped edges the  boundary conditions a r e  

A s e t  of functions which s a t i s f y  these boundary conditions is  

u ~ ( x , Y )  = Irm(x)Qn(Y) 

The form f o r  IjTm(x) is :  

where 
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COSh % - COS 
= sin - sinh K, 

and where the satisfy cosh & cos IC, = 1; the form for qn(y) is the 
same as that for qm(x). 

For simply supported edges the boundary conditions are 

u(0,y) = u(1,y) = u(x,o) = U(x,l) = 0 

d2U a2U a2U d2U - (0,y) = - (1,y) = - (x,o) = - (x,l) = 0 
3x2 ax2 3Y2 3Y2 

A set of functions which satisfies these boundary conditions is  

um(x,y) = sin m x  sin m y  

Substituting - -  
N M  

n-i m=i 
in equation (4) gives: 

or  

Multiplying by U,, and integrating over the panel we have: - -  
N M  

or 

- u6,r6ns) = 0 (9) 

r = 1, 2, . 
s = 1, 2, . 
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where 

1 i f  m = n  

 if m + n  

These in tegra ls  a r e  straightforward f o r  e i t h e r  t he  clamped o r  simply 
supported case and may be found i n  reference 5. 
hrs are  as follows: 

%e resu l t ing  formulas f o r  

For the  clamped case : 

DmDsn + 6ns(HrmA COS A + DmRx) 2Ha2 
Lmnrs = Am&&, + 

where 

Hm = 0 

For the  simply supported case: 

2a 1 a 
+ 7 RXYP,Pns + 2 A cos A6nsPmr + - 2b A s i n  A 6 d n s  
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where 

Equations (9) are l i n e a r  and can be wr i t ten  i n  m a t r i x  form: 

(A - aI)C = 0 

A = (a i j )  

i =  ( r  - 1 ) N + s  

a i j  = Lmnrs 

j =  ( m  - 1 ) N + n  

and I i s  the i d e n t i t y  matrix. 

The problem becomes t h a t  of f inding the  eigenvalues of t h e  matrix A. In  
what follows we s e t  
speeds it has a negl igible  e f f e c t  on the  c h a r a c t e r i s t i c  roots  of equation ( 5 ) .  
In t h i s  case when a l l  eigenvalues a r e  r e a l ,  the  motion i s  s tab le .  If a t  l e a s t  
one p a i r  of eigenvalues i s  a complex conjugate p a i r ,  the  motion i s  unstable, 
t h a t  i s ,  the amplitude increases with time. The value of A = 2qa3/pDx a t  
which a conjugate p a i r  of eigenvalues f i r s t  appear i s  ca l led  the  c r i t i c a l  
value and denoted A,. For values of A above A c ,  f l u t t e r  occurs. 

Aa/V,  i n  equation (5), t o  zero s ince f o r  high supersonic 

The eigenvalues of the  m a t r i x  A were computed with the  IBM 7094 using 
an ex is t ing  eigenvalue program. The values of Ac were obtained by a t r i a l  
and e r r o r  converging process.  The problem -- w a s  programed f o r  any n x n matrix 
from 4 x 4 t o  100 x 100, where n = MN, t h e  product of the number of modes i n  
the  x di rec t ion  and the  y direct ion.  The input could be any combinationof 
the panel parameters and any number of eigenvalues could be computed. With 

24 eigenvalues. 
= 4 and m = 6, f o r  example, the matrix A i s  24 x 24 and consequently has 

RESULTS AND DISCUSSION 

The r e s u l t s  of t h i s  analysis  a r e  presented i n  the  form of p l o t s  of the  
c r i t i c a l  dynamic pressure parameter, A,, as a function of the  number of modes 
used and as a function of the  flow angle A f o r  various combinations of the  
s t i f f n e s s  r a t i o s  H/Dx and Dy/Dx and the length-to-width r a t i o  a/b. The 
p l o t s  of Ac versus the  number of modes demonstrate the convergence proper- 
t i e s  of Galerkin's  method and the p l o t s  of Ac versus A a r e  f l u t t e r  bound- 
a r i e s  f o r  which a s u f f i c i e n t  number of modes have been used t o  obtain a 
reasonably converged solut ion.  Since we have used modified l i n e a r  p i s ton  
theory f o r  aerodynamic loading, the  r e s u l t s  a r e  r e s t r i c t e d  t o  Mach numbers 
above M ~1.6. 
i n  the  aerodynamic loading can be shown t o  have only a s m a l l  e f f e c t  on the  
f l u t t e r  boundaries. This i s  due t o  the  imaginary p a r t  of the  eigenvalue 
increasing qui te  rapidly above t h e  f l u t t e r  boundary and dominating t h e  damp- 
ing contribution of the  unsteady aerodynamic term. 

In  t h i s  Mach num-ber range the  omission of the  unsteady term 

(Also see r e f .  6 . )  
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The problem of t h e  convergence of Galerkin's  method f o r  t h i s  p a r t i c u l a r  
boundary value problem has not, so far as we know, been invest igated.  I n  t h e  
absence of proofs r e l a t i n g  t o  convergence p rope r t i e s  we have used the c r i t e -  
r i o n t h a t t h e  so lu t ion  is  converging when it displays asymptotic behavPor as a 
funct ion of the number of modes; that is, when t h e  difference between so lu-  
t i ons  with n modes and with n + 1 modes decreases as n increases  we say 
t h a t  t he  so lu t ion  is converging. For t h e  cases where we have exact so lu t ions  
it appears that t h e  Galerkin method converges t o  t h e  cor rec t  value. 

Figure 1 shows t h e  panel  geometry. 
makes an angle A with t h e  s ide  of t he  panel  a t  y = 0. The or thotropic  axes 
of t h e  p l a t e  are p a r a l l e l  t o  t h e  s ides ,  and 
t i on ,  is  always taken l a r g e r  than 4. 

The supersonic flow of ve loc i ty  V 

h, t h e  r i g i d i t y  i n  t h e  x direc-  
i n  a l l  of t h e  calculat ions.  

Figures 2(a)  through 2( i) demonstrate convergence proper t ies  of 
Galerkin's method i n  the  form of p l o t s  of Ac versus t h e  number of modes i n  
the  y d i r ec t ion  f o r  various values of a/b, H/&, +/&, A, and E, where 
is  the  number of modes i n  t h e  x d i rec t ion .  Figures 2 (a )  and 2(b)  f o r  simply 
supported i so t ropic  panels show t h a t  as t h e  length-to-width r a t i o  i n  t h e  dire-  
t i o n  of t h e  flow increases  t h e  number of modes required ( t o  obtain convergence) 
increases very rapidly.  
so lu t ion  while at 
10 percent of t h e  exact value which w a s  obtained by the  method of reference 6. 

A t  a/b = 0.5, 4 modes give a reasonably converged 
a/b = 0.1, 25 modes are required t o  give a so lu t ion  within 

0 Figures 2 (c )  and 2(d)  are f o r  a clamped i so t rop ic  panel  with A = 90 
using one mode i n  t h e  x d i rec t ion .  The spanwise (x d i rec t ion)  modes are 
coupled f o r  t he  clamped case but  f o r  A = 90' t h e  inclusion of more spanwise 
modes makes only a s m a l l  d i f ference.  The convergence i s  s l i g h t l y  slower b u t  
qua l i t a t ive ly  very much t h e  same as f o r  t h e  simply supported case. 
clamped cases which correspond t o  converged simply supported cases a r e  
p rob ab l y  converged . 

Hence, t h e  

Figure 2 (e )  shows convergence proper t ies  f o r  s m a l l  flow angles of an 
i so t ropic  panel  with 
the  lower curves are obtained and show two s t a b l e  regions. When % = = 4, 
there  a r e  s t i l l  two s t a b l e  regions bu t  when 
s t ab le  region vanishes while t he  main bmndary remains unchanged. The upper 
s t ab le  regions f o r  both 
and due t o  unconverged so lu t ions .  

Figure 2 ( f )  f o r  an a/b 

a/b = 0.5. For two modes i n  each d i rec t ion  (M = R = 2) 

= 4 and E = 10, the  upper 

fi = fi = 2 and R = = 4 are thus seen t o  be spurious 

- -  
of 0.1 - shows two s t a b l e  regions when M = N = 4, 

but  t he  upper region vanishes when N is increased t o  10. The curve f o r  
% = 4 and E = 10 
angles i s  seen t o  depart  subs t an t i a l ly  from t h e  

represents  a converged solution-and-for qui te  s m a l l  flow 
M = N = 4 boundary. 

Figures 2(g)  and 2(h)  demonstrate t he  influence of orthotropy on conver- 
gence f o r  square panels.  In  general, f o r  f ixed  %/Dx < 1 and a/b = 1, t h e  
number of modes i n  t h e  y d i rec t ion  required f o r  convergence increases with 
t h e  flow angle and with H/&. For values of A o ther  than 90' a t  l e a s t  two 
modes a r e  required i n  t h e  d i rec t ion ,  and near Oo; th ree  or four  modes may x 
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be required,  the p a r t i c u l a r  
convergence problem i s  most 
H/%. 

In f igu re  2( i) we have 

value depending 
severe f o r  very 

on t h e  r i g i d i t y  r a t i o s .  The 
s m a l l  %/& together  with l a rge  

p lo t t ed  Ac versus f o r  a simply supported 
panel  of a/b = 1.0, %/s( = 0.0002, and A = goo f o r  H/& = 0.15 and 
H/& = 0.5. 
each d i rec t ion .  It i s  evident from t h e  figure t h a t  t he  solut ions are not 
approaching convergence even with 50 modes. 
with 
The exact so lu t ion  f o r  H/& = 0.15 i s  A, = 198, and f o r  H/& = 0.5 is  
1197.3. 
Ac = 16.5. 
i n  other  words, i s  about 8.5 percent of t h e  cor rec t  value. 
o ther  than 900 or Oo no exact solut ions have been obtained and t h e  modal 
approach must be used. 
number of modes i n  t h e  y d i r ec t ion  would be required even f o r  flow angles as 
s m a l l  as 5 O  and a t  least two modes would be required i n  t h e  
The maximum m a t r i x  s i z e  x of t h i s  ana lys i s  w a s  l imi ted  t o  about 
60 x 60 because of inherent  l imi t a t ions  i n  the  eigenvalue program. 

This case w a s  analyzed by Bohon (ref. 4) using only 2 modes i n  

For the  simply supported panel  
A = goo an exact so lu t ion  can be obtained by t h e  method of reference 6. 

For t h e  2-mode so lu t ion  of reference 4 and f o r  f igu re  e ( ? ) ,  
The 2-mode so lu t ion  i s  thus inaccurate by a f ac to r  of about 12 or, 

For flow angles 

For t h e  cases being considered ( f i g .  2 ( i ) )  a la rge  

x d i r ec t ion .  

Figures 3 through 5 a r e  converged f l u t t e r  boundaries f o r  various combina- 
t i ons  of t he  parameters. For values of Ac i n  t he  region above a curve 
f l u t t e r  occurs; f o r  values below the  curve the  panel i s  s t ab le .  The c r i t e r i o n  
used f o r  convergence w a s  t h a t  Ac 
converged value. 
t i n g  Ac 
be conservative i n  most cases.  Figure 3 shows the  va r i a t ion  of A, with flow 
angle f o r  several values of 
angle on A, f o r  th ree  values of H/D,  with +/& = 0.1 and a/b = 1. The 
curve f o r  H/& = 1 
smaller H/D, and shows a minimum a t  about A = TO0 r a the r  than a t  90'. This 
behavior i s  considered i n  more d e t a i l  i n  t h e  discussion of f igu re  5.  

should be a t  l e a s t  85 percent of t h e  f u l l y  

as a funct ion of the  number of modes, t he  85-percent c r i t e r i o n  w i l l  
Since the  f u l l y  converged value must be estimated by p l o t -  

a/b. Figure 4 (a )  shows the  influence of flow 

i s  curious i n  t h a t  it ac tua l ly  i n t e r s e c t s  t h e  curves f o r  

The s ignif icance of f igu re  4(a)  i s  tha t  the  t o r s i o n a l  r i g i d i t y  H has 
l i t t l e  e f f e c t  a t  flow angles near zero bu t  very la rge  influence near go0. The 
influence of t o r s i o n a l  r i g i d i t y  i s  even more pronounced i n  the  curves of f i g -  
ure  4(b)  f o r  %/Dx = 0.01. For H/% = 0.01, A, decreases very rap id ly  with 
increasing A. For higher values of H/&, t h e  influence of flow angle i s  
progressively l e s s .  The curves f o r  H/Dx = 1 and H/Dx = 0.5 do not extend 
t o  A = 90' because convergence could not be obtained a t  the  l a rge r  flow 
angles.  Figure 5 shows A, as a funct ion of H/& f o r  a square panel  with 

For flow angles up t o  about 20°, 3 t e maximum Ac ac tua l ly  occurs f o r  H/% l e s s  than 1. A t  A = Oo t he  max-  
h u m  A, occurs a t  H/Dx 2 0.5. One would expect t he  m a x i "  A, t o  occur 
a t  the  maximum H/% bu t  t h i s  i s  not t h e  case f o r  these  flow angles.  Fig- 
ure  5 displays more c l e a r l y  t h e  behavior f o r  s m a l l  flow angles i n  f igu re  4 (a ) .  

/D, = 0.1 a t  seve ra l  s m a l l  flow angles.  

It should be noted t h a t  t h e  range of values of %/S, and H/Dx t h a t  
might occur i n  p r a c t i c e  has not been w e l l  es tabl ished.  
panels including r ib - s t i f f ened  and corrugat ion-st i f fened panels have been 
analyzed by considering them t o  be or thotropic  and ca lcu la t ing  o r  measuring 

Several  types of 
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t h e i r  equivalent s t i f f n e s s e s  by assuming homogeneity. 
example.) 
( f i g .  10) correspond approximately t o  values measured and calculated i n  r e f -  
erence 7 f o r  a corrugat ion-st i f fened panel.  
sk in  panels t h a t  are being used on c e r t a i n  aerospace vehicles .  
corrugat ion-st i f fened panel i s  not t r u l y  homogeneous bu t  has a per iodic  s t r u c -  
t u re ,  it may possibly not be accurate t o  treat it as homogeneous i n  a f l u t t e r  
ana lys i s  i f  a la rge  number of modes are needed i n  t h e  solut ion.  As  t he  modal 
wavelength approaches the  s t r u c t u r a l  c e l l  s i z e  the  t h e o r e t i c a l  model may not 
accurately represent  t he  physical  s i t u a t i o n .  

(See r e f .  7 f o r  
The panel  parameters %/DX = 0.0002, H/Dx = 0.15, a/b = 1.0 

They are a l s o  t y p i c a l  of some 
Since a 

Final ly ,  f o r  reference,  we have included the  midplane s t r e s s  terms, 
Nx, Ny, NW, i n  t h e  equations but  have made no calculat ions f o r  nonzero 
s t r e s s e s .  

CONCLUSIONS 

For a f ixed  bending s t i f f n e s s  r a t i o  Dy/Dx and length-to-width r a t i o ,  
t he  c r i t i c a l  dynamic pressure parameter Ac, and hence t h e  dynamic pressure a t  
f l u t t e r ,  i s  s t rongly  dependent on the  to r s iona l  s t i f f n e s s  r a t i o  
pa r t i cu la r ,  f o r  values of H/D, near D ~ / D ~ ,  A, i s  very sens i t i ve  t o  a s m a l l  
change i n  flow angle, A, near 

H/Dx. In 

A = 0'. 

In  t h e o r e t i c a l  work employing the  Galerkin method, the  accuracy of the  
r e s u l t s  obtained must be considered carefu l ly .  We have shown t h a t  f o r  i so -  
t rop ic  panels with high length-to -width r a t i o s  and f o r  most or thotropic  panels 
including those of p r a c t i c a l  importance, a la rge  number of Galerkin modes is  
required t o  obtain converged so lu t ions .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Apr i l  21, 1966 
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